What’s DAT Smell? Untangling and Weaving the
Disjoint Assertion Tangle Test Smell

Monil Narang
University of California, Irvine
Irvine, California, USA
moniln@uci.edu

I. ABSTRACT

Abstract—In this work, we characterize a novel test-code smell—
Disjoint Assertion Tangle (DAT)—which occurs when a test
method verifies multiple, logically unrelated behaviors that can
be separated. We propose a program analysis-based approach
that automatically detects DAT and refactors DAT tests into
separate focused test methods. We implemented this approach as
a tool called U2W. By separating unrelated testing logic, U2W
enhances readability, maintainability, and fault localization, while
exposing hidden test clones and duplicated code. It then seizes
these opportunities by converting structurally similar tests into
compact, parameterized unit tests (PUTs), reducing redundancy
and enabling more scalable, extensible test designs. To evaluate
our approach and tool, we conducted a number of evaluations:
(1) a large-scale, quantitative study to study the prevalence of the
test smell and the effects of their refactoring, (2) a user survey to
assess developers’ opinions and preferences of the unrefactored
and refactored test code, and (3) pull requests that were issued
to original project maintainers to assess the acceptability of our
refactorings. Our quantitative study was conducted on 42,334
tests across 49 open-source projects. We found the DAT smell
in 95.9% of the subject projects, affecting an average of 8.59%
of analyzed tests. In total, we identified and refactored 3,638
smelly tests, untangled them into 31,837 test-execution logics,
and then weaved 14,343 of them into 1,713 extensible PUT
methods. These refactorings reduced the executable test-code
lines in smelly tests by an average of 36.33%. Our user survey
involving 49 industrial and academic participants demonstrated
strong preference for our refactored test cases over their original,
unrefactored versions. Additionally, we submitted 19 pull requests
based on our automated refactorings; 16 of these were accepted
by project maintainers. These results suggest that U2W effectively
improves test-suite quality, and validate our novel test smell aligns
closely with developers’ intuitions and practices.

II. INTRODUCTION

Writing high-quality tests is essential for ensuring software
correctness, maintainability, and long-term evolution. However,
test suites frequently devolve to accumulate suboptimal design
decisions, resulting in what are known as fest smells [1]-[3].
These test smells are not technically incorrect but may foster
deeper issues, such as reduced clarity and readability, compro-
mised maintainability during long-term software evolution, or
diminished effectiveness of downstream tasks, such as fault
localization and program repair [4]-[7].

A common source of test smells stems from developers’
urgency to keep pace with rapidly evolving codebases. In
such scenarios, developers often reuse existing test methods

Hang Du
University of California, Irvine
Irvine, California, USA
hdu5@uci.edu

James A. Jones
University of California, Irvine
Irvine, California, USA
jajones@uci.edu

as templates—renaming methods, tweaking inputs, or modi-
fying assertions—without fully reconsidering the underlying
test structure [8]. This “copy-and-paste” behavior has been
documented in empirical studies of how developers write unit
tests [8]. Consequently, test methods often become overly
lengthy and tangled, combining multiple independent testing
logics that should ideally be isolated into distinct unit tests.

Such lengthy test methods often simultaneously exhibit
multiple previously documented test smells. Examples of such
test smells include eager tests [1] that validate several behaviors
in a single test method, verbose tests [9] spanning numerous
lines, and duplicate tests [1] redundantly covering similar
logic with slight variations. Although these classic fine-grained
smells have been well-established since 2001 [1], their detection
typically involves heuristic-based thresholds such as the number
of production method calls [9]-[13], line count [9], [14], and
textual similarity [15], and their refactoring is often subject to
developer judgment and development context [1], [6], [16].

In this paper, we identified this previously undocumented
test smell through a pilot study, which we describe in the
motivation section. We then formalize this identified test
smell, which we call Disjoint Assertion Tangle (or DAT),
with a precise definition, characterized by a test method that
contains multiple semantically independent Assertion Clusters—
a logically cohesive unit consisting of one or more assertions
that share a common setup and collectively verify a specific
behavior or concern. We surmise that this smell may typically
arise from incremental edits or mechanical reuse of test code, a
phenomenon highlighted by prior studies [8]. We hypothesize
that the presence of DAT undermines test focus, readability,
and maintainability by entangling independent test-execution
logics in a single test method.

To address the DAT test smell, we introduce a fully
automated technique that both detects and refactors affected
test methods into cleaner, modular forms. Specifically, our
approach decomposes lengthy, smelly test methods into multiple
conventional unit tests (CUTs), synthesizes them into parame-
terized unit tests (PUTs), and generates descriptive names for
each refactored test method and extracted variables. Moreover,
for tests that have been parameterized, our approaches also
can optionally suggest new value sets to provide greater test
thoroughness. Consequently, while our technique is primarily
designed to address DAT smells, it also has the potential

to mitigate other well-known classic test smells—such as
Eager Test and Verbose Test—by promoting more focused,
less redundant, and clearly named tests.

To evaluate our approach, we conducted multiple studies
using various empirical methods. First, we conducted a quantita-
tive study by implementing our approach in a tool called U2W
to evaluate the prevalence of DAT and assess the quantitative
effects of their refactorings on 49 open-source Java repositories.
Our tool identified 3638 instances of DAT, isolating 31,837
independent behavioral logics subsequently refactored into
focused unit tests, including 1713 parameterized test methods.
This transformation resulted in a 36.33% reduction in test
code duplication. Second, we conducted a developer survey
with 49 industrial and academic developers focusing on non-
functional attributes and overall preferences for the refactored
tests. The results indicated strong developer preference for
the refactored tests. Finally, we submitted 19 pull requests
containing our transformations to open-source projects. Of
these, 16 pull requests were accepted and merged by their
project maintainers, which provides strong support for our
hypothesis that DAT is undesirable and that their refactored
versions are preferred.

The primary contributions of this paper are:

o Formalizing and defining the new test smell, Disjoint
Assertion Tangle, with actionable refactoring guidelines.

o Designing and implementing a fully automated technique
that detects and refactors DAT instances into conventional
and parameterized unit tests.

o Empirically evaluating our technique across 49 widely-
used Java repositories, detailing the prevalence, character-
istics, and impact of refactoring.

o Conducting a developer survey and validating the practical
acceptance of our refactoring approach through real-world
pull request submissions.

Data Availability. All code, experimental setup, survey, results,
and links to pull requests are available [17].

III. MOTIVATION

This section presents an illustrative example that highlights a
hypothetical scenario leading to a smelly test, grounded in test-
engineering behaviors observed in prior research [8]. We then
describe a pilot study on an open-source project to empirically
validate our hypothesis regarding the presence of this test
smell in real-world test-development practices. Additionally,
we discuss our manual refactoring of the identified smelly tests
to gain preliminary insights into effective refactoring strategies.

Motivating Example. Figure 1(a) presents an example of a
smelly unit test. A developer tasked with testing a banking
application begins by creating an initial test case — instantiating
an Account object and verifying its name and balance via two
assertions. To expedite coverage of additional scenarios, the
developer resorts to a common shortcut: copying and pasting
existing test code. Specifically, they repeatedly duplicate the
account creation and make minimal edits, i.e., updating argu-
ments in account instantiation, to validate multiple accounts.

They also replicate the original assertions, adjusting only the
expected values and the verified variable names.

Although a developer’s intentions may be for such changes
to be temporary, such incremental edits may often expand and
persist due to project pressures and delayed refactoring efforts.
Consequently, the test method grows increasingly complex,
exhibiting a clear test smell: it intertwines semantically in-
dependent test code by instantiating three separate Account
objects and verifying each with distinct groups of assertions.

Although this scenario presents a hypothetical and simplified
test-engineering workflow, it closely reflects common testing
practices familiar to many developers. Such “lazy” test devel-
opment is not merely theoretical; Aniche ef al. [8] observed
13 developers performing think-aloud testing tasks on real-
world open-source projects and found that developers frequently
resort to “copy-and-paste” or “template-based” test creation
with minimal modifications as a productivity shortcut.

Observing DAT Test Smell in Real-World Code. This work was
first motivated by the authors’ experience observing test code
that accrued multiple, independent test assertions. Particularly
for students enrolled in software-testing courses, submitted
homework assignments often contain a single test method that
contain several test assertions (e.g.,assertEquals(2, sum(1,1);
assertEquals(3, sum(1,2)); assertEquals(4, sum(2,2);) The
first author also independently conducted a pilot study of open-
source test code, with the purpose of discovering opportunities
to parameterize test cases. The first author also observed a
frequent phenomenon of test methods that contained multiple
sets of lines of test code that were independent, in terms of
data and control dependence. These observations, once shared,
became the impetus for us to define this test smell and to
pursue further investigation of it.

From our manual analysis in the pilot study, we found that
smelly tests in real-world projects can be considerably more
difficult to identify — and sometimes exhibit more severe
structural issues — than our contrived example. Figure 2
presents a real-life test case with two distinct sets of test-
code lines that share no control or data dependence. We call
each such set of test code as an “assertion cluster,” and a
test method that contains multiple such assertion clusters as
exhibiting the DAT test smell. In this figure, each assertion
cluster is highlighted in a different color to illustrate their
potential to be isolated into separate tests. These semantically
independent execution logics are interwoven within the same
test method, which significantly obscures the test’s behavior and
the developer’s intent. Refactoring these clusters into clearly
named, standalone test methods — as illustrated in the legend of
Figure 2 — may improve both comprehension and extensibility.

Additionally, we manually refactored the identified smelly
tests into multiple distinct test methods and found that the
isolated methods often share identical method invocation
sequences, differing only in input values. For example, in
our illustrative scenario depicted in Figure 1(a), a single test
method was effectively split into three methods (depicted in
Figure 1(c). We found further opportunities to minimize code
duplication by transforming conventional unit tests (CUTs) into

@Test
public void testAccount() {

Account account2 = new Account(“Mary”, 300);

assertEquals(“Sam”, accountl.getName());
assertEquals(10000, accountl.getBalance());
assertEquals(“Mary”, account2.getName());
assertEquals(300, account2.getBal F
assertEquals(“Xiaohua”, account3.getName());

Account account| = new Account(“Sam”, 10000);

Account account3 = new Account(“Xiaohua”, 20);

Account account| = new Account(**Sam”, 10000);
assertEquals(“Sam”, account|.getName());

Account account| = new Account(**Sam”, 10000);

Account account| = new Account(**Sam”, 10000);
assertEquals(“Sam”, account| getName());
assertEquals(10000, account! getBalance());

assertEquals(10000, accountl.getBalance());

Account account2 = new Account(“Mary”, 300);
assertEquals(“Griffin”, account2.getName());

Account account2 = new Account(“Mary”, 300);

>

Account account2 = new Account(“Mary”, 300);
assertEquals(“Mary”, account2.getName());
assertEquals(300, account2.getBalance());

assertEq

300, account2.)i

Account account3 = new Account(*“Xiaohua”, 20);
assertEquals(“Tim”, account3.getName());

Account account3 = new Account(*Xiaohua”, 20);
assertEquals(“Xiaohua”, account3.getName());

asser 20, Bl : asser . H
) BecolhE » Account aceount3 = new Account(“Xfachua”, 20); 20. account3.)i
asser 20, account3.getBal: ;
@ () ()
. . Decouple Merge
orlglnal TeSt W|th DAT (Isolate assertion logic via : (Unify slices winj shared

backward slicing)

oo"-El
“'“E'

Categorize
(Cluster similar assertion
slices with same patterns)

Parameterize

Enhance) .
(Rename methods/variables; [Validate > (Abstract tests into reusable |
Our Recommended Test optionally add test cases) templates)
(f) (e) (@
@ParameterizedTest
@CsvSource({ @ParameterizedTest Account accountl = new Account(“Sam”, 10000);
S| 00000 @CsvSource({ assertEquals(“Sam”, account|.getName());
Mary’, 300", “Sam’, 10000, assertEquals(10000, account| getBalance();
“Xiaohua', 20", “Mary’, 300"
e /1 generated by LLM “Xiaohua', 20", Account account2 = new Account(“Mary”, 300);

h

public void testCreateAccount(String name, it balance) {
Account account = new Account(name, balance);
assertEquals(name, account.getName());
account. ;

(var]

}

public void newTestl (String varl, int var2) {
Account var3 = new Account(varl, var2);
assertEquals(var|, var3.getName());
assertEquals(var2, var3.getBalance());

assertEquals(“Mary”, account2.getName());
assertEquals(300, account2.getBalance());

Account account3 = new Account(“Xiachua”, 20);
assertEquals(“Xiaohua”, account3.getName());
assertEquals(20, account3.getBalance());

Fig. 1: Technique workflow: detection and refactoring phase

r@Tes:
public void testMsgSerialize() throws IOException {
RaftSyncMessage raftSyncMessage = new RaftSyncMessage();

|

2 RaftGlobalSessionSyncMsg raftSessionSyncMsg = new RaftGlobalSessionSyncMsg();
3

4

5 T i Msg.setGlobal GlobalTransactionDTO("123:123"));
6 raftSyncMessage.setBody(raftSessionSyncMsg);

7 byte[] msg = RaftSynch geSerializer. aftSyncMessage);

8 RaftSyncMessage raftSyncMessage | = RaftSyncMessageSerializer.decode(msg);
9

10

I

12

14 Assertions.assertEquals("123:123", ((RaftGlobalSessionSyncMsg) raftSyncMessage |.getBody())
.getGlobalSession().getXid());

Independent testSerializeGlobalSessionMsg

Test Execution Logics |l testSerializeBranchSessionMsg

Fig. 2: Example APACHE SEATA test with independent logic

parameterized unit tests (PUTs) [18]. Such parameterization
provided a reusable template structure, conveniently supporting
the more test scenarios with additional value sets.

Our pilot study confirmed that smelly tests with interwoven
independent logic clusters exist within open-source projects.
Moreover, we found practical evidence of developers applying
the “copy-and-paste” and “template-based” test-engineering
style beyond previous human studies [8]. Our refactoring
demonstrated the potential to isolate smelly tests into clearly
focused, properly named methods and also the significant
additional benefits from adopting parameterized tests, which
further reduces code duplication and induces new value sets.

IV. FORMALIZING DAT TEST SMELL, BACKGROUND, AND
REFACTORING PRINCIPLES

In this section, we formally define this newly identified test
smell, Disjoint Assertion Tangle (DAT). Then, we provide a de-

tailed comparison between DAT and classic test smells. Finally,
we formalize the principles of refactoring DAT instances.

A. Test Smell: Disjoint Assertion Tangle

Let T be a test case containing a set of assertion statements
{a1,a2,...,a,}, and let S; denote all setup statements from
T required to execute assertion a;, i.e., the set of program
statements that may influence the outcome of a;.

We construct an undirected graph G = (V, E) where:

o« V= {alaa@a"',an}

« An edge (a;,a;) € E exists iff S; N S; # 0

The test T exhibits DAT if G contains more than one con-
nected component, i.e., T' can be partitioned into two or more
assertion clusters with non-overlapping logic dependencies.
This indicates that T is composed of multiple semantically
disjoint sub-tests and would benefit from decomposition for
improved maintainability, clarity, and fault isolation.

B. Comparison of DAT with Classic Test Smells

Our formalized definition of Disjoint Assertion Tangle (DAT)
advances beyond classic test smells by grounding “testing too
much” in the precise, actionable notion of behavioral isolation
and, as a byproduct, enabling detection of intra-method code
duplication—a dimension overlooked by existing smells.

Behavioral Isolation. Table I contrasts DAT with classic smells
that allude to the concept of “testing too much” (e.g., Eager
Test, Verbose/Long Test), sometimes framed as violations of
the single-responsibility principle [22]. Those smells rely on
ambiguous definitions and heuristic, threshold-based proxies
that lack actionable precision and resist full automation.
Specifically, Tran et al. [23] systematically analyzed test-
smell detection tools, identifying at least six distinct rules

Smell ‘ Core Concepts Detection ‘ Refactoring
Disjoint Assertion | Precise Tangled assertions verifying | Precise Structural slicing + disjoint-set algorithms Fully Automatable
Tangle (DAT) disjoint logic and dependencies
“Eagerly” verifies multiple be- Production method count (most common) .
Eager Test) haviors in one test o [9]-[13]; calls to multiple production classes Deve_loper CXPeftlﬁe
Ambiguous Heuristics | [19]; information retrieval-based metrics [20]; | required (e.g., limited Ul
machine learning-based approaches [21] support [20])

Excessive verbosity / long

Verbose Test
setup

Lines of Code (10-30 [9], [14], [19])

Note: The core concepts reflected in test smell naming and the associated detection metrics are often conflated or used interchangeably in prior literature.

TABLE I: Comparison of Disjoint Assertion Tangle (DAT) with classic test smells regarding behavioral isolation

for detecting Eager Tests, and proposed finer-grained heuristics
to improve detection accuracy. DAT, instead, is structurally
defined: a tangle is present when assertions in a single test
verify disjoint logic and dependencies. This yields a crisp,
algorithmically checkable criterion aligned with behavioral
isolation and directly supports automated refactoring, rather
than merely flagging symptoms. Overlaps exist—DAT instances
may also appear verbose (too long) or eager (invoking too
many production methods), and conversely, tests identified as
Eager or Verbose can themselves inadvertently manifest as
DAT instances (e.g., Figure 2). Yet length or call count alone
does not imply a tangle: a multi-line, multi-call test can still
exercise a single coherent behavior and thus be non-DAT, which
typical heuristics would misclassify and still require developer
judgment for detection and refactoring. Conversely, a test that
invokes only a few production methods below the detection
threshold may still constitute a DAT if isolatable execution
logics are present. Examples of such overlaps can be identified
from the file examples.md in our artifact [17].

Code Duplication. As a byproduct of isolating tangled behav-
iors, identifying a DAT instance also exposes intra-method
test code duplication. The classic Duplicated Code smell [9]
highlights redundancy in test code, but detection is typically
limited to inter-method clone metrics [9], [12], which often miss
duplication embedded within a single test. DAT’s structural
segmentation of execution logic naturally reveals such dupli-
cation, thereby complementing traditional inter-method clone
detection with intra-method analysis. Moreover, the presence
of intra-test duplication aligns with developers’ observations of
copy-paste patterns inside tests [8]. This perspective broadens
the scope of duplication detection to capture the full spectrum
of redundancy in test code.

C. Refactoring Principles

Refactoring a DAT smell instance requires careful consider-
ation not only to eliminate the DAT itself, but also to prevent
the introduction of additional test smells during the process.
Drawing from both our analytical assessment and practical
refactoring experience, we derive a set of structured and targeted
guidelines specifically designed to address the DAT smell:

1) Tangled Behaviors: Partition DAT-smelly tests into dis-
tinct, self-contained behaviors, while avoiding extremes
such as overly eager or excessively verbose testing.

2) Duplication Reduction: Identify duplicated code across
isolated test methods and, where appropriate, refactor

into shared helpers or parameterized unit tests, potentially
enabling systematic exploration of new value sets.

3) Understandability Refinement: Improve clarity by
applying meaningful test method names (see also Anony-
mous Test [14]) and variable naming conventions (see
also Magic Number Test [24]). This ensures that isolated
test logic remains both interpretable and maintainable.

V. TECHNIQUE

This section describes our proposed approach and our tool,
U2W (Untangle to Weave), designed to automatically detect
and refactor tests affected by Disjoint Assertion Tangle. Our
technique follows two phases for each test method under
analysis: (1) smell defection and (2) test refactoring.

Figure 1 illustrates these phases, where Steps (a), (b), and (c)
refer to the smell detection phase, and Steps (b)—(f) correspond
to the test-refactoring phase. The provided figure utilizes the
illustrative example from Figure 1(a). In the remainder of this
section, we depict our technique comprehensively and discuss
the rationales behind our refactoring process, emphasizing
the three fundamental quality guidelines (Behavioral Isolation,
Duplication Reduction, and Understandability Refinement)
introduced earlier in Section IV-C.

Detection Phase. We leverage the Disjoint Set algorithm [25]
to determine whether a test method aggregates multiple
independent test behaviors. Concurrently, this step identifies
and isolates distinct behavioral segments, i.e., assertion clusters,
within the identified smelly tests.

The first two steps in Figure 1, Decoupling (b) and Merging
(c), are shared between the detection and refactoring phases.
In the detection phase, these steps are performed virtually (i.e.,
in memory) and in the refactoring phase, the cumulative result
of both phases is then output to new suggested test files.

Decoupling: Backward Slicing from Assertions. Initially, U2W
transforms each test method under analysis into its Abstract
Syntax Tree (AST) representation. It subsequently identifies
all assertion statements in the test code and applies static
dependency analysis (backward slicing) on each of them. By
performing backward slicing from each assertion, the algorithm
determines minimal sets of statements (i.e., slices) required to
independently reproduce the setup of each assertion.

The result from this step may contain instructions that form
multiple “purified” tests [26], each containing exactly one
assertion statement and minimal setup code. Such purified
tests, or “atomized” tests in the fault-localization literature [26],
allow isolation and debugging of individual behaviors.

However, producing these highly granular, single-assertion
test cases may result in a Lazy Test anti-pattern [9], [22], [27],
where each test verifies excessively narrow behavior, causing
unnecessary redundancy across test methods. Therefore, we
refrain from generating atomized tests directly. For instance, as
depicted by Figure 1(b), instantiating the same account object
repeatedly results in unnecessary duplication of setup code.

Merging. To optimize granularity and minimize code redun-
dancy, U2W next merges atomized tests into assertion clusters
when they share identical statements according to their AST
representation. Each resulting assertion cluster reflects one
coherent, independent execution logic, including the appropriate
setup statements (illustrated as Figure 1(c)). Ultimately, if a
test contains multiple independently verified assertion clusters,
the algorithm reports a DAT smell in that test method.

Refactoring Phase. After detecting a DAT instance, our
approach refactors the affected test methods and further reduces
code duplication by identifying parameterization opportunities.
The resulting in-memory data structures that represent the
independent assertion-cluster from the Decoupling/Merging
steps are first written to new test files for tests with the
DAT smell. Then, optionally, the technique can further refine
these refactored tests potentially parameterizing them, renaming
method and parameter identifiers, and generating new value
sets. Each such step is described here.

Assertion-Cluster-Based Refactoring. Based on the in-memory
assertion clusters that were detected for smelly tests in the
previous phase, the technique then extracts statements from
the original tests and consolidated them into new test methods.
This approach preserves the original statement order and retains
associated comments.

Categorization of Similar Tests. The technique next identifies
suitable candidates for parameterization by analyzing and group-
ing similar assertion clusters based on structural equivalence of
their ASTs. Specifically, two assertion clusters are considered
similar if they fulfill the following criteria:

1) Their AST structures are identical.

2) They differ exclusively in literal values or variable
identifiers within their fixture code. Variables are replaced
with abstract versions and compared for equivalence.
Literals are made into parameterized value sets.

3) Their assertion statements are equivalent in terms of
assertion type and purpose.

Such grouping criteria correspond conceptually to Type-
2 code clones [28], characterized by structural identity with
variation limited to identifiers and literals. Please note that our
technique supports grouping similar assertion clusters across
multiple DAT-impacted test methods within the same class,
ensuring that such cases are not overlooked in parameterization.

Parameterization. Upon identifying similar tests as suitable
parameters, the tool generates parameterized test cases from
these assertion clusters. During this step, our tool automatically
formulates parameterized unit test (PUT) templates by anno-
tating the test methods with appropriate JUNIT annotations

(e.g., @ParameterizedTest, @ethodSource, or @SVSource),
extracting variable inputs for parameterization, and preparing
corresponding source methods.

Initially, the PUT templates employ temporary placeholders
for variables and method names (e.g., placeholders such as
varl, var2, etc., demonstrated in subfigure (e) of Figure 1),
awaiting further name refinements.

Validation. After leveraging parameterization opportunities,
U2W executes the refactored tests against the codebase to
ensure semantic correctness. This execution-outcome validation
discards any refactored test that fails to reproduce the same
outcome as its original counterpart (e.g., fails instead of passes),
leaving the original tests unaffected. Moreover, the tool also
enforces structural consistency checks to guarantee that the
sequence of statements and the total number of statements
preserved within each assertion cluster remain unchanged.

LLM-Based Enhancement. Finally, our method utilizes Large-
Language Model (LLM) capabilities to provide meaningful
and descriptive identifiers for method and variable names.
To achieve this, we feed the LLM prompt with sufficient
context information, including: (1) the original (unrefactored)
smelly test method, (2) relevant test input values guiding
parameterization, (3) signatures of the methods under test, and
(4) descriptive comments (if available within the test context).

We prompt the LLM to generate clean, formatted method
names and descriptive variable identifiers. The placeholders
initially defined in the PUT method are replaced with these
clear and meaningful identifiers, significantly enhancing the
readability and understandability of the refactored tests. Addi-
tionally, U2W provides an optional feature that leverages LLM
to retrofit new value sets into the parameterized test methods.

VI. EVALUATION AND EXPERIMENTAL METHODOLOGY

In this section, we detail the experimental design used in
evaluating our proposed technique. We first define the research
questions guiding our evaluation, along with their rationales.
Subsequently, we describe our experimental procedures and
metrics used to investigate these research questions. Specifically,
our experiments examine (1) the prevalence of the DAT smell,
(2) quantifiable structural improvements achieved through
refactoring (i.e., behavioral isolation and code de-duplication),
and (3) developers’ perspectives gathered via practical feedback
and pull requests to open-source projects.

Research Questions:

RQ1: How prevalent is the Disjoint Assertion Tangle smell
in real-world open-source test suites? [Prevalence]
How effectively does our proposed approach isolate
distinct execution logics from smelly test code into
individual refactored tests? [Behavioral Isolation]
To what extent can U2W’s parameterization module
reduce code duplication in unit tests exhibiting test
smells? [Code De-duplication]

How do developers perceive unit tests refactored by
U2W? [Developer Preference]

RQ2:

RQ3:

RQ4:

RQ1 Prevalence. For this research question, we systematically
investigate its prevalence in real-world codebases. Particularly,
we present the percentage of tests flagged with DAT test smell
relative to the unit tests analyzed by our technique.

We also quantify overlaps between DAT and existing smells
to highlight their points of convergence and distinction. For
this comparison, we adopt the most representative detection
metrics for Eager Test and Verbose Test used in prior studies
[29]. While these smells have been defined using different
heuristics and thresholds across tools—Ileading to variation in
interpretation—our goal is not to revalidate those definitions.
Instead, we aim to illustrate where DAT instances coincide with
or diverge from them, and, more importantly, to demonstrate
that U2W provides fully automated refactoring support not
provided by prior approaches.

Please note that the common Eager Test heuristic threshold
is only set to be 1, making any tests with 2 or more production
method calls detected as Eager Test. As such, we use the
number of production method calls (>= 4) and the lines of
code (>= 13) as thresholds for Eager Test and Verbose Test,
respectively, following prior empirical work that identified these
values as “medium severity” [30].

RQ2 Behavioral Isolation. Then, we analyze the degree to
which tangled assertion clusters exist within identified smelly
tests. Specifically, we quantify the amount of “behavioral
entanglement” by counting how many distinct test-execution
logics (referred to as assertion clusters) are extractable into
cohesive, focused tests as a result of our refactoring approach.
This demonstrates the effects of the “Decoupling” and “Merge”
components ((b) and (c) in Figure 1). The numeric results
enable us to measure how effectively our technique mitigates
“eagerness” in the smelly tests.

RQ3 Code De-duplication. Behavioral isolation within a single
test method enables intra-method clone detection and parameter-
ized refactoring—capabilities that prior techniques do not offer.
We then assess the effectiveness of our parameterization module
in reducing redundant code from test methods. This corresponds
to the “Categorize” and “Parameterize” components ((b) and
(c) in Figure 1). Particularly, we measure executable lines of
code (eLOC) in each test before and after refactoring, and
compute the duplication reduction rate as:

eLOCBefore — eLOCAfter
eLOCpgefore

Additionally, we report the number of value sets extracted
per PUT method. This gives us quantitative insights into our
approach’s capacity to generalize repetitive test logic.

RQ4 Developer Preference. RQ2 and RQ3 offer quantitative
evaluations regarding measurable improvements in behavioral
isolation and code duplication in refactored tests. To com-
plement this, RQ4 investigates the human-centric viewpoint,
focusing on real-world developers’ perspectives after reviewing
refactored tests generated by U2W. To obtain qualitative
feedback, we surveyed participants with different backgrounds
to evaluate their preferences and perceptions of original

De-duplication Rate = x 100%

(smelly) versus refactored tests. We also submitted 19 pull
requests containing refactored tests to open-source projects and
evaluated responses from maintainers. This evaluation not only
assesses the understandability of the refactored tests—focusing
on the test method and variable naming enhancement module
of our tool—but also validates that our novel test smell is
consistent with developers’ intuitions and practices.

Quantitative Evaluation (RQI-RQ3).

Dataset. The dataset used in this study incorporates all the
subjects from [31], [32] and [33], originally derived from
previous works [34]-[37]. Additionally, we augmented our
dataset with six additional projects identified during preliminary
analysis as likely candidates for containing DAT instances.
These extra projects were opportunistically selected based on
their popularity and ongoing, active development status.

Overall, our final dataset comprises 49 diverse open-source
Java projects with varying levels of popularity. The subject
identifiers and names are shown in the first two columns in
Table II. Among the subjects, 13 projects have more than 10,000
stars, 14 projects fall within the range of 1,000 to 10,000 stars,
and 22 have fewer than 1,000 stars. Collectively, these projects
represent a broad spectrum of Java projects with JUNIT tests,
including frameworks designed for distributed systems and
microservices (e.g., APACHE DUBB, APACHE SEATA), big data
and stream processing solutions (e.g., APACHE FLINK, APACHE
HAaDOOP), web-oriented libraries and APIs (e.g., JSOUP,
SPRING-WS), tools designed for testing and observability
(e.g., APACHE SKYWALKING, GRAYLOG), as well as various
utility libraries and domain-specific tools extensively leveraged
throughout enterprise software development.

Specifically, we excluded test methods containing conditional
logic constructs (if-else, switch), as we consider these
indicative of deeper-level design issues that should be addressed
prior to addressing DAT. Previous research characterizes these
constructs as Conditional Test Logic test smell [29]. Moreover,
our tool automatically filters out test case methods that are
not compatible with our rudimentary slicing implementation,
which includes code involving lambda expressions, mocking
frameworks, and other complex constructs (e.g., @verride,
parameterized tests, Thread.sleep). These exclusions, while
notable, do not impact the conceptual validity or effectiveness
of our approach, as our technique remains applicable and gen-
eralizable to these scenarios given enhanced tool support. The
resulting refined dataset constitutes the basis for our analysis
and evaluation. Detailed filtering statistics per repository are
available in our provided artifacts. As a result, our dataset
comprises 42,334 test case methods from 49 subjects.

Experimental Environment. We conducted our experiments
using a 2022 MacBook equipped with an Apple M2 CPU
(3.49 GHz, 8-core CPU), 8 GB of RAM, operating on
macOS 15.3.2. We used GPT-40 Mini [38] to implement
our LLM-based enhancements. We selected this model due
to its publicly accessible API via the LangChain library
and its reduced environmental footprint compared to larger
alternatives. Additionally, for evaluation purposes, we disabled

(a) Familiarity with Unit/Parameterized Testing and Test Smells

Familiarity

W Not at all familiar
Slightly familiar
Somewhat familiar

Unit Testing 5.3% 36.8% 52.6%

Moderately familiar
m Extremely familiar

s -

Extremely familiar

10.5% 211% 31.6%

Testing

Test Smells -

Not at all familiar

Parameterized .

15.8% 36.8%

(b) Distribution of Respondents by Experience Level Dev;lg; w
Dev (1-3 yr) 2
14.3%

Juniors
122%

Fig. 3: Demographics of participants

the optional feature in U2W that uses LLM to augment the
generated parameterized unit tests with extra value sets. Overall,
excluding the time spent on LLM-assisted enhancements and
execution validation, the complete refactoring effort across all
subject projects required approximately 10 minutes. During
this process, 8 (out of 3646) refactored tests were rejected due
to failures identified during the execution-validation process.

Survey (RQ4). Our survey was conducted in two stages.
The first stage captured participants’ preferences on unit test
styles through written evaluation tasks, while the second stage
was a post-survey profile that gathered additional background
information. This separation was intended to minimize priming
effects [39]: if participants had been introduced to terms such
as “test smell” or labels like “Eager Test” beforehand, they
might have evaluated the code examples by rigidly applying
predefined rules rather than relying on their own judgment of
readability, maintainability, and overall quality.

Survey Design. The first stage of the survey presented six
representative code examples from our technique. For each,
participants were asked to compare randomized side-by-side
pre- and post-refactoring tests. They indicated their preference
across five dimensions: readability, maintainability, extensibility,
debugging capability, and overall preference. Each question
also included a text box for optional open-ended comments.

The six example pairs were selected to balance realism,
comprehensibility, and diversity. Among them, four examples
were drawn directly from open-source projects, and two
were lightly simplified (e.g., renaming identifiers or removing
unrelated code) to improve clarity while preserving the essential
characteristics of the code and the DAT smell. The set covers
a range of DAT patterns our tool addresses, including: (1)
isolated tests with non-trivial logic, (2) parameterized tests
with concise or multi-line logic, (3) long smelly tests split into
one or more parameterized templates, and (4) parameterized
tests with varied input sizes (2-5). All six pairs are available
in our public artifact for transparency.

The second stage was a post-survey profile designed to
capture background information. Participants reported their
years of unit testing experience and rated their familiarity with
unit testing, parameterized unit testing, and test smells on a
5-point Likert scale [40], ranging from “Not at all familiar” to
“Extremely familiar.”

Participants. We invited a total of 49 participants. Recruitment

was conducted through the authors’ professional networks and
by contacting senior undergraduates from the university’s ICS
department with demonstrated experience in programming and
testing, as well as software developers working in industry.
The participants’ demographics are summarized in Figure 3.

About 70% of the participants were industry practitioners,
while the remaining were upper-division undergraduates (third-
or fourth-year students). On average, respondents from indus-
tries reported 4.3 years of unit testing experience. Industry
respondents averaged 4.3 years of unit testing experience; over
half reported being “extremely familiar” with unit testing and
“moderately familiar” with parameterized testing. In contrast,
roughly 70% had limited familiarity with test smell terminology
despite extensive exposure to unit tests.”

Analysis Method. We analyzed the results of binary preference
questions across participants grouped by participants’ experi-
ence levels: (1) software engineers with > 3 years of industry
experience, (2) software engineers with 0-3 years of industry
experience, and (3) junior and senior undergraduate students.
We first aggregated all binary preference responses across
participants and code examples to calculate the overall favoring
percentages. Then, we investigated participants’ preference
patterns for specific code pairs to understand which types of
refactoring changes influenced their choices. Then, two authors
qualitatively analyzed the open-ended comments, discussing
and extracting key insights from the participants’ reasoning.

Pull Requests (RQ4). We also contributed back to the
open-source community by submitting pull requests (PRs)
containing the refactored tests from our technique. At the
point of writing, our efforts yielded a total of 19 pull requests
containing refactored tests from our technique. These PRs
contain 1 to 4 refactored tests and were distributed across
6 open-source projects, including APACHE SEATA (6 PRs),
APACHE BAREMAP (9 PRs), APACHE MORO (1 PR), APACHE
COMMONS NET (1 PR), JsouP (1 PR), and APACHE XTABLE
(1 PR). Among them, 2 PRs include additional value sets in
the refactored PUT method to further motivate the refactoring.
With the outcome of PRs, we drew insights from real-life
project maintainers’ feedback.

VII. RESULTS

RQI: Prevalence of Disjoint Assertion Tangle. Columns
3 and 4 in Table II present the total number of analyzed
tests and the occurrence of DAT across each subject in our
dataset. For instance, in COMMONS-CLI, we identified 21
tests with DAT among the total 171 analyzed tests. To further
illustrate and complement the information from Table II, we
visualize the prevalence of DAT per subject in Figure 5, sorting
them in descending order to better depict the distribution.
The IDs of the subjects on the horizontal axis of Figure 5
correspond to the subjects listed in Table II. We observed DAT
occurrences in almost all subjects (47 out of 49) in our dataset;
however, its prevalence varies. DAT instances can reach as
high as approximately 30.0% of the analyzed tests in SPOTIFY-
WEB-API and COMMONS-LANG. In total, we identified 3,638

~

DAT | o &

norp z.oae\ N

247 \

\f; j
\ 14,508

S6 |
| D

705
s3.

Fig. 4: Overlap of DAT, Eager, and Verbose Test Smells

smelly tests containing DAT among the 42,334 tests analyzed,
representing 8.6% of the tests in our entire dataset.

Moreover, Figure 4 illustrates the overlaps between DAT,
Eager Test, and Verbose Test. Eager Tests dominate the
distribution, accounting for 54.5% of all analyzed tests, with
a large exclusive region (S2) and a substantial overlap with
Verbose Tests (S6). This prevalence and smell coexistence
observation is consistent with prior empirical findings [5].

DAT, in contrast, constitutes a smaller portion overall but
exhibits distinct characteristics. Notably, 1,247 tests (S1) are
exclusively DAT, capturing behaviors overlooked by heuristic
thresholds for Eager (> 4 method calls) and Verbose (> 13
LOC)—thresholds identified as medium severity in earlier
studies [30]. Among DAT overlaps, the largest is with Eager
Test (S4, 2,086 tests), while the overlap with Verbose Tests
(S5) is minimal—just nine tests—too small to be shown in the
proportional Venn diagram due to geometric layout constraints.

The most important insight lies in the DAT instances
highlighted by the red-dotted circle: these are “perfectly
separable” where completely independent execution logics
exist within a single smelly test. Their structural independence
provides an unambiguous signal that the test can be and maybe
should be refactored, and our tool performs this automatically—
something prior heuristics cannot achieve. As a result, our
tool not only refactors DAT instances but also simultaneously
restructures 2,391 tests flagged as medium-severity Eager or
Verbose, thereby demonstrating practical value in addressing
multiple smells within a unified framework.

RQ1: DAT smell is prevalent, appearing in 47/49 projects
and affecting 3,638 test methods (8.6%). U2W automatically
detected and refactored these instances, including 2,391 also
marked as medium-severity Eager or Verbose tests.

RQ2: Isolation of Independent Execution Logics. For the
3,638 smelly test method, U2W successfully isolated a total of
31,837 distinct assertion clusters, which were then abstracted
into 17,494 test case methods through U2W’s parameterization
module. Figure 6 illustrates the distribution of the number
of assertion clusters our technique detected, isolated, and
refactored from each non-refactored test. For example, 1,895
smelly tests containing DAT can be split into exactly two

TABLE II: Dataset Overview: Subject Projects & Test Analysis

New Avg
No. | Project Tests DAT (%) Git Stars
PUTs | Value Sets

1 [commons-cli 171 21 (12.28) 15 3.67 368
2 | commons-validator 267 | 38 (14.23) 22 4791 213
3 | spotify-web-api-java 317 95 (29.97) 0 0.00 1,048
4| cdk/data 141 1 (0.71) 1 5.00 528
5 | commons-text 533 50 (9.38) 66 4.97 362
6 [dynd;j 1202 30 (2.50) 2 3.00 509
7 | commons-codec 403 | 81 (20.10) 35 10.37 470
8 [joda-money 624| 24 (3.85) 4 3.25 668
9|jline3 198 10 (5.05) 10 3.20 1,574
10 | jfreechart 1579 19 (1.20) 2 7.00 1,293
11 [incubator-seata 852 95 (11.15) 28 4.11 25,644
12 | jsoup 844 | 36 (4.27) 24 6.17 11,175
13 | commons-net 119 7 (5.88) 3 3.67 273
14 | amoro 131 19 (14.50) 14 7.07 974
15 | incubator-xtable 61 3(4.92) 2 2.00 1,054
16 | incubator-baremaps 136 26 (19.12) 7 4.00 539
17 | Activiti 465 43 (9.25) 12 4.83 10,321
18 | jitwatch 101 6 (5.94) 5 5.00 3,158
19 | graylog2-server 1163 | 110 (9.46) 62 4.98 7,684
20 | commons-configuration 713 44 (6.17) 14 3.29 208
21 | commons-dbep 180 | 25 (13.89) 3 2.67 350
22 [commons-io 581| 88 (15.15) 25 7.32 1,032
23 | commons-lang 1554 | 465 (29.92)| 357 5.74 2,802
24 | commons-math 963 60 (6.23) 34 5.79 612
25 | commons-pool 34 5 (14.71) 0 0.00 532
26 | dubbo 1524 | 161 (10.56) 43 4.88 41,015
27 | flink 4863 | 185 (3.80) 95 5.89 24,907
28 | hadoop 4985 155 (3.11) 87 6.21 15,104
29 | skywalking 128 17 (13.28) 11 3.82 24,336
30 [rocketmq 470 24 (5.11) 8 3.38 21,809
31| storm 214 15 (7.01) 5 4.80 6,629
32 | HikariCP 25 0 (0.00) 0.00 20,466
33 [dropwizard 718 30 (4.18) 4 5.00 8,544
34 | druid 5712 334 (5.85)| 160 12.88 13,719
35 [eclipse-collections 3701 | 664 (17.94)| 203 3.99 2,513
36 | elastic-job-lite 200 12 (6.00) 5 3.00 2
37 | graphhopper 794 71 (8.94) 75 3.69 5,815
38 | Openfire 324 15 (4.63) 2.80 2,932
39 | java-design-patterns 438 16 (3.65) 4 3.25 91,910
40 | marine-api 844 | 121 (14.34) 12 6.58 253
41 | languagetool 934 224 (23.98)| 194 21.50 13,138
42 | spring-ws 366 16 (4.37) 5 3.60 330
43 | asterisk-java 241 12 (4.98) 11 5.55 439
44 [undertow 153 11 (7.19) 9 9.33 3,645
45 | admiral 520 24 (4.62) 12 6.33 257
46 | Wikidata-Toolkit 782 110 (14.07) 6 3.00 382
47 | wildfly 781 18 (2.30) 11 6.18 3,110
48 | carbon-apimgt 119 0 (0.00) 0 0.00 170
49 | riptide 166 2 (1.20) 1 6.00 318
| | Total | 42334 | 3638 (8.59)| 1713] 585| 375.134]

w
S

-~ Average: 8.59%

25

20

Percentage of Tests with DAT Smell (%)
=
G

mmm
Subject Projects

Fig. 5: Prevalence of DAT across subjects

1750

1500

1250

1000

750

Number of Tests

500

250

2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20+
Number of Independent Assertion Clusters per Test

Fig. 6: Distribution of the number of extracted execution logics

separate tests, each with its own independent execution logic.

We observe that most DAT-smelly tests contain a relatively

small number (typically between 2 and 6) of assertion clusters.

However, we also encountered some extreme cases: specifically,
our approach identified 37 test methods containing more than
50 distinct execution logics each. In a particularly extreme
instance, we found one test case method, testDetNounRule in
LANGUAGE TOOL, containing 551 distinct execution logics.
Through our manual investigation, we found that test case
methods with unusually high numbers of execution logics often
exhibit repetitive test logics with different value sets. Overall
each smelly test contains a median of 3 assertion clusters.

RQ2: U2W successfully isolated 31,837 distinct execution
logics from 3,638 DAT-smelly tests. Most DAT-smelly test
could be refactored into 2—6 test execution logics.

RQ3: Code Duplication Reduction. Figure 7 illustrates the
reduction in executable lines of code—achieved by U2W'’s
parameterization module—among DAT-smelly tests across
different subjects, sorted in descending order. For instance,
parameterization achieved a reduction of up to 87.6% in
duplicated executable lines of code among smelly tests in
COMMONS-VALIDATOR (subject ID 2). We found that the de-
duplication rate varies notably across different projects. Overall,
U2W reduces test-code duplication for 45 out of the 47 subjects
that exhibited the DAT smell, achieving an average duplication
reduction rate of 36.3% among smelly tests.

RQ3 The parameterization module in U2W successfully
reduced the duplicated executable lines of code in DAT-smelly
tests for 45 out of the 47 DAT-smelly subjects, achieving an
average duplication reduction of 36.3%.

RQ4: Developer Preferences for Refactored Tests. Devel-

oper Preference Survey. Figure 8 uses grouped bar charts

-~ Average: 36.33%

Code Reduction in DAT Tests (%)

Subject Projects

Fig. 7: RQ3: code duplication reduction among smelly tests

Refactored Preference (%)

Readability ~ Maintainability —Extensibility Debugging/
Diagnosis

mmE Senior Devs (>3 YOE)

Overall
Preference

Students --- Average

Junior Devs (=3 YOE)
Fig. 8: Participant preference for our refactored tests

to illustrate the percentage of favorable ratings for U2W-
refactored tests across four quality dimensions and overall
preferences. Within each dimension, results are categorized by
participant demographics: students (orange), junior developers
(light blue), and senior developers (dark blue). Additionally,
the average favoring preference percentages (aggregated across
all participant groups) are indicated with dashed horizontal
lines and accompanying labels across each quality dimension.

Among all participants, we found that nearly all agreed
refactored tests have enhanced maintainability (86.1%) and
extensibility (89.8%). However, the perceived improvements in
readability and debugging/diagnosis received more moderate
support, with favorability rates averaging 66.1% and 68.8%, re-
spectively. Regarding overall favorability, 83.4% of participants
preferred U2W-refactored tests over the original ones.

Breaking down the results by participants’ experience levels,
we found senior developers with more than three years of
professional experience expressed stronger preferences for our
refactored tests, with 83.4% favoring U2W-refactored tests
compared to lower preference rates among junior developers
(78.8%) and undergraduate students (67.8%).

We also manually investigated developers’ comments to gain
insights into the refactored tests. Below, we highlight some of
the common themes reflected in their feedback:

Behavioral Isolation:

“Each test case for different scenarios must be
wrapped in different testing blocks, which is where
[refactored code] shines. Secondly, I like the read-
ability of function name which specifies what the
actually the test case is doing.” (P18)

Code Duplication:

“Imagine having many assertEquals and there is a
change you need to make across each line, that will
be lot of code refactoring.” (P17)

Readability: Participants have diverged opinions on the
readability of refactored tests under specific scenarios, espe-
cially for parameterized tests. One developer noted that variable
names in parameterization can sometimes hinder readability.
“[non-refactored code] is more readable, just because
you see the variables inline in the function calls
in [refactored tests], but for all other purposes,
[refactored code] is better.” (P10)
We investigated this case and speculated that developers may
prefer inline values over readable variable names when the
inline values themselves are intuitive and self-readable, which
is against the definition of the classic test smell, Magic Test.
Moreover, when the extracted PUT method is simple, e.g.,
containing only one assertion with understandable inline values,
it may appear less readable than the non-refactored one:
“[refactored code] is not as readable, could be im-
proved by improving the formatting in the test cases,
currently it’s a long list of numbers. [unrefactored
code] makes it obvious about what exactly is being
calculated.” (P10)

Additionally, developers may prefer the adoption of parameter-

ized tests when there are many new value sets to be used.
“It will depend on how much I want to test that
method, generally you end up only testing for a few
value in which case the first one makes sense. I will
use the [non-refactored code] until I really need to
use the [refactored code].” (P12)

Pull Requests. Among 19 submitted pull requests at the time
of submission, 16 were accepted by project maintainers, 2
are still open, and 1 is closed. One PR is closed because the
project maintainer is happy with the current implementation.
Among the two open PRs, one received positive feedback, but
the maintainers noted that modifying a single test would be
inconsistent with the project’s overall test suite. In the other
open PR, which includes a PUT method with three value
sets, the maintainers discuss that PUT is most beneficial when
dealing with numerous test cases and complex method body:

“I usually wait to use parameterized tests until there

are a lot of test cases and the repeated code starts to

get messy. When there are only a few checks, I think

regular test lines are easier to read and understand.

Parameterized tests can make things harder to follow

if they don’t really help with keeping the code cleaner

or easier to update.”

Summary RQ4: Overall, 83.4% of survey participants pre-
ferred U2W-refactored tests, with a much higher preference
observed among senior professionals. Additionally, 16 out
of 19 pull requests were accepted. However, the adoption
of parameterized tests may depend on both the number of
retrofitted value sets and the complexity of the PUT method.

VIII. DISCUSSION

Our methodology for investigating and learning about DAT
test smells was inspired by previously observed human test-
engineering patterns. These patterns offer a unique avenue for

us to explore and formally define the test smell under study.
The correlation between the DAT and classic test smells not
only helps to explain the coexistence of multiple classic smells
but also enables us to develop detailed refactoring guidelines.
Our empirical analysis, developer surveys, and pull-request
experiences have yielded several insights and implications:

Wide Presence and Impact of the DAT Smell. Our analysis
reveals the widespread presence of the DAT test smell. Specif-
ically, nearly all subject projects (47 out of 49) contained tests
exhibiting the DAT smell, affecting an average of 8.59% of
all analyzed tests. Developer surveys and pull request reviews
further confirmed the negative impacts of the DAT smell on
test readability, maintainability, debugging, and extensibility.

Mitigating Classic Test Smells. The precise definition of the
DAT smell facilitates its detection and enables a fully automated
refactoring approach—an uncommon achievement in the test
smell community, where ambiguities in detection rules and
refactoring guidelines have traditionally hindered automation.
Unlike heuristic-based smells such as Eager Test or Verbose
Test, which rely on arbitrary thresholds, DAT is grounded in
structural isolatability, making automated transformation both
feasible and reliable. The notion of isolatability itself provides
a strong signal for refactoring: when independent behaviors
coexist in a single test, they can be meaningfully separated.
Our results confirm that U2W automatically detected and
refactored 3,638 of DAT instances, including 2,391 also labeled
as medium-severity Eager or Verbose tests. In practice, DAT’s
refactoring solution inherently mitigates symptoms of these
smells by splitting a smelly test into an average of 8.8 smaller,
more focused tests (RQ2). This restructuring also decreases
code duplication by 36.3% through parameterization (RQ3).
Despite these advances, many Eager/Verbose tests remain
unresolved because their intertwined logic is not cleanly
separable. Some are long merely to set up state—subjective
cases that heuristics may over-report (over 50% labeled “Eager’
in our study) and may not warrant refactoring. Addressing
truly problematic cases likely requires developer-in-the-loop
strategies. Still, DAT demonstrates feasible, fully automated
refactoring and a path to progressively untangle complex tests.”

bl

On the Use of Parameterized Tests. Parameterized tests were
proposed decades ago by researchers (e.g., [41], [42]) to abstract
repetitive test logic and facilitate introducing new input values.
However, our human studies found that parameterized tests can
sometimes diminish readability. We speculate that the need for
annotations (such as csv or methodsource) can pose minor
visual readability challenges. Given this, the parameterized
tests are generally more preferable when involving large
sets of input values and with non-trivial execution logics.
Consequently, future tools for refactoring DAT smells might
prioritize parameterizing tests based on specific metrics to target
the most beneficial improvements. Our current implementation
scans the code and offers two refactoring options—split-and-
merge or parameterized—leaving the choice to developers.

Test Smell Education. Our study also revealed varying opinions
on DAT and refactored test cases among participants with

different levels of engineering experience. Notably, we found
in RQ4 that senior engineers showed a greater preference for
refactored tests than junior engineers, who in turn preferred
them more than undergrads. This suggests that academic
programs could enhance software-testing curricula to promote
better test-engineering practices and styles among students.

IX. THREATS TO VALIDITY

Threats to Internal Validity stem from possible unintended
behavioral changes, despite DAT being precisely defined and
algorithmically separable. To mitigate this, U2W performs
three validations: (1) automated structural checks to ensure
consistency of statement order and line of code before param-
eterization; (2) parameterization restricted to Type-2 clones
[28], which preserve structural identity with variations limited
to identifiers and literals, excluding Type-3 clones that involve
added, removed, or modified statements; and (3) execution
validation as a pragmatic safeguard for behavioral preservation.

The last sanity check is necessary because static slicers,
while theoretically sound, can occasionally be imprecise
in practice due to unrecognized complex dependencies or
external resources [43]. Our current implementation skips
tests with complex constructs (e.g., lambda expressions) and
only considers first-party dependencies, excluding third-party
libraries. In our experiments, 8 of 3,638 instances failed,
all due to unrecognized external dependencies. For example,
write—close-reopen of the same file path via a new variable
creates a resource-level dependency that lies outside local
def-use; static slicing therefore does not connect the two steps.
As such, we reject such refactorings during execution validation.

To further validate correctness, the authors manually in-
spected randomly sampled 102 DAT instances (3%) and their
refactored counterparts (447), finding no behavioral differences.
Finally, all identified DAT instances and refactorings are re-
leased in our replication package, and refactorings are surfaced
as recommendations, ensuring developers retain oversight.

There are Threats to External Validity relating to the ability
to generalize of our findings for other projects, frameworks, and
languages. That said, the observed “copy-paste” and “template-
based” patterns are likely widespread, and our evaluation
is performed on 49 diverse projects (42,334 tests), further
supported by developer surveys and 19 submitted pull requests.

Threats to Construct Validity pertain to potential inaccuracies
in characterizing the construct of “bad test design” or the “test
smell” concept. Our definition of DAT might deviate from
developers’ intentions or perceptions. However, we grounded
DAT clearly within established test-smell patterns. Furthermore,
we demonstrated the practical harm of test-logic interweaving in
our pilot study, reinforced our findings with developer surveys,
and validated our construct through real-world pull requests.

X. RELATED WORK

Classic Test Smells and Their Limitations. The concept of
code smells was initially introduced by Deursen et al. [2] and
later expanded to test code [1]. Since then, empirical studies
extensively investigated its impacts [5], [6], [15], [16], [22],

[29], [44]-[46], and various tools have emerged for test-smell
detection [9], [13], [23], [24], [47], [48]. However, existing
research seldom attempts full automation of refactoring de-
tected test smells. Current detection is mainly semi-automated,
offering suggested improvements yet still requiring substantial
manual developer intervention during refactoring [9], [20].

Fully automating test-smell refactoring encounters several
practical challenges: ambiguity in detection criteria, coexistence
of multiple smells within a single test suite [9], and subjective
developer evaluations of smell severity [6]. Our work listed the
varied smell-detection metrics and thresholds in Section IV-B
and adopted a “medium severity” threshold [30] to examine
the empirical overlaps among DAT, Verbose Test, and Eager
Test. Nevertheless, U2W uniquely supports the automated
refactoring of DAT instances—capabilities not offered by prior
detection metrics or existing tools. Another example is Lazy
Test smell, which characterizes tests that insufficiently exercise
intended behaviors, i.e., “testing too little.” However, detection
is rare in existing tools and typically heuristic, identifying
multiple tests that call the same methods with similar test
fixtures [9], [12], [19], [24]. Moreover, Duplicated Code
was usually addressed via inter-method clone detection with
developer assessment in prior works [1], [9], [12] . By contrast,
mitigating DAT enables intra-method duplication detection
and parameterization of Type-2 Clones, complementing prior
inter-method clone detection [12].

Parameterized Unit Tests. Parameterized Unit Tests (PUTs),
originally introduced by Tillmann and Schulte [41], have gained
attention due to their modularity and abstraction potential.
Prior work has also explored manual refactoring of tests into
PUTs [42] and automated approaches for retrofitting similar
methods [49]. However, our technique instead targets long
tests with multiple independent scenarios, emphasizing clear
abstractions, meaningful names, and readability, offering fresh
insights into developer acceptance and practical impact.

XI. CONCLUSION

In this work, we introduce a novel test smell, Disjoint
Assertion Tangle (DAT), defined as having multiple independent
assertion clusters within one test method. Our automated tool,
U2W, identified and refactored DAT instances in 47 of 49
projects analyzed (8.59% of tests), restructuring 3,638 tests
into 31,837 test cases, and grouping 14,343 cases into 1,713
parameterized unit tests, reducing test code lines by 36.33%.
Developer feedback confirms that DAT refactoring aligns well
with practitioner preferences. Our study highlights the tradeoffs
involved in test parameterization and emphasizes the need for
practitioner awareness of suboptimal test designs. In future
work, we aim to investigate adaptive refactoring approaches that
incorporate developer feedback or project-specific conventions
to better align with human-centric test refactoring.

ACKNOWLEDGMENTS

We thank all study participants, Professor Darko Marinov
for his guidance, Shubhi Jain for her help, and the Spider Lab
for its supportive research environment.

[1]
[2

—

[3

[t

[4]
[5]

[6

=

[7]

[8

—

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

REFERENCES

A. Deursen, L. Moonen, A. Bergh, and G. Kok, “Refactoring test code,”
08 2001.

M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., 1999.

M. Tufano, F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia,
and D. Poshyvanyk, “An empirical investigation into the nature of test
smells,” in Proceedings of the 31st IEEE/ACM international conference
on automated software engineering, 2016, pp. 4-15.

D. Campos, L. Soares Bastos, and I. Machado, “Developers perception
on the severity of test smells: an empirical study,” 07 2021.

G. Bavota, A. Qusef, R. Oliveto, A. Lucia, and D. Binkley, “Are
test smells really harmful? an empirical study,” Empirical Softw.
Engg., vol. 20, no. 4, p. 1052-1094, Aug. 2015. [Online]. Available:
https://doi.org/10.1007/s10664-014-9313-0

A. Panichella, S. Panichella, G. Fraser, A. A. Sawant, and V. J.
Hellendoorn, “Test smells 20 years later: detectability, validity, and
reliability,” Empirical Software Engineering, vol. 27, no. 7, p. 170, 2022.
[Online]. Available: https://doi.org/10.1007/s10664-022-10207-5

D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli,
“On the relation of test smells to software code quality,” in 2018 IEEE
international conference on software maintenance and evolution (ICSME).
IEEE, 2018, pp. 1-12.

M. Aniche, C. Treude, and A. Zaidman, “How developers engineer
test cases: An observational study,” IEEE Transactions on Software
Engineering, vol. 48, no. 12, pp. 4925-4946, 2022.

M. Breugelmans and B. Van Rompaey, “Testq: Exploring structural
and maintenance characteristics of unit test suites,” in WASDeTT-1: 1st
International Workshop on Advanced Software Development Tools and
Techniques. Citeseer, 2008, p. 11.

B. Van Rompaey, B. Du Bois, and S. Demeyer, “Characterizing the
relative significance of a test smell,” in 2006 22nd IEEE International
Conference on Software Maintenance, 2006, pp. 391-400.

B. Van Rompaey, B. Du Bois, S. Demeyer, and M. Rieger, “On the
detection of test smells: A metrics-based approach for general fixture
and eager test,” IEEE Transactions on Software Engineering, vol. 33,
no. 12, pp. 800-817, 2007.

G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and D. Binkley, “An
empirical analysis of the distribution of unit test smells and their impact
on software maintenance,” in 2012 28th IEEE International Conference
on Software Maintenance (ICSM), 2012, pp. 56-65.

J. De Bleser, D. Di Nucci, and C. De Roover, “Socrates: Scala
radar for test smells,” in Proceedings of the Tenth ACM SIGPLAN
Symposium on Scala, ser. Scala ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 22-26. [Online]. Available:
https://doi.org/10.1145/3337932.3338815

S. Reichhart, T. Girba, and S. Ducasse, ‘“Rule-based assessment of test
quality.” Journal of Object Technology, vol. 6, pp. 231-251, 10 2007.
F. Palomba, A. Zaidman, and A. De Lucia, “Automatic test smell detection
using information retrieval techniques,” in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2018, pp.
311-322.

G. Galindo-Gutierrez, M. N. Carvajal, A. Fernandez Blanco, N. Anquetil,
and J. P. Sandoval Alcocer, “ A manual categorization of new
quality issues on automatically-generated tests ,” in 2023 IEEE
International Conference on Software Maintenance and Evolution
(ICSME). Los Alamitos, CA, USA: IEEE Computer Society, Oct. 2023,
pp. 271-281. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/ICSMES8846.2023.00035

M. Narang, H. Du, and J. A. Jones, “U2W artifact,” https://github.com/
spideruci/U2W, 2025.

S. Thummalapenta, M. R. Marri, T. Xie, N. Tillmann, and J. de Halleux,
“Retrofitting unit tests for parameterized unit testing,” in Fundamental
Approaches to Software Engineering, D. Giannakopoulou and F. Orejas,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 294-309.
L. Martins, H. Costa, and I. Machado, “On the diffusion of test smells
and their relationship with test code quality of java projects,” Journal of
Software: Evolution and Process, vol. 36, no. 4, p. €2532, 2024. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532

S. Lambiase, A. Cupito, F. Pecorelli, A. De Lucia, and F. Palomba,
“Just-in-time test smell detection and refactoring: The darts project,”
in Proceedings of the 28th International Conference on Program
Comprehension, ser. ICPC ’20. New York, NY, USA: Association

USA:

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

for Computing Machinery, 2020, p. 441-445. [Online]. Available:
https://doi.org/10.1145/3387904.3389296

V. Pontillo, D. A. d’Aragona, F. Pecorelli, D. D. Nucci, F. Ferrucci,
and F. Palomba, “Machine learning-based test smell detection,” 2022.
[Online]. Available: https://arxiv.org/abs/2208.07574

G. Galindo-Gutierrez, “Automatically generating single-responsibility
unit tests,” 04 2025.

H. K. V. Tran, N. Ali, M. Unterkalmsteiner, and J. Borstler, “A proposal
and assessment of an improved heuristic for the eager test smell detection,”
01 2024.

A. Peruma, K. Almalki, C. D. Newman, M. W. Mkaouer, A. Ouni, and
F. Palomba, “tsdetect: an open source test smells detection tool,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1650-1654. [Online]. Available:
https://doi.org/10.1145/3368089.3417921

B. A. Galler and M. J. Fisher, “An improved equivalence algorithm,”
Commun. ACM, vol. 7, no. 5, p. 301-303, May 1964. [Online].
Available: https://doi.org/10.1145/364099.364331

J. Xuan and M. Monperrus, “Test case purification for improving fault
localization,” in Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: Association for Computing Machinery, 2014, p.
52-63. [Online]. Available: https://doi.org/10.1145/2635868.2635906
Hacker News, “Discussion on assertion roulette,” https://news.
ycombinator.com/item?id=33479397, 2022, accessed: 2025-05-08.

C. Roy and J. Cordy, “A survey on software clone detection research,”
School of Computing TR 2007-541, 01 2007.

W. Aljedaani, A. Peruma, A. Aljohani, M. Alotaibi, M. W. Mkaouer,
A. Ouni, C. D. Newman, A. Ghallab, and S. Ludi, “Test smell
detection tools: A systematic mapping study,” in Proceedings of the 25th
International Conference on Evaluation and Assessment in Software
Engineering, ser. EASE *21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 170-180. [Online]. Available:
https://doi.org/10.1145/3463274.3463335

D. Spadini, M. Schvarcbacher, A.-M. Oprescu, M. Bruntink, and
A. Bacchelli, “Investigating severity thresholds for test smells,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, 2020, pp. 311-321.

C. Li, A. Baz, and A. Shi, “Reducing test runtime by transforming test
fixtures,” in Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE ’24. New York, NY,
USA: Association for Computing Machinery, 2024, p. 1757-1769.
[Online]. Available: https://doi.org/10.1145/3691620.3695541

H. Du, V. K. Palepu, and J. A. Jones, “ Leveraging Propagated
Infection to Crossfire Mutants ,” in 2025 IEEE/ACM 47th International
Conference on Software Engineering (ICSE). Los Alamitos, CA, USA:
IEEE Computer Society, May 2025, pp. 687-687. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00150

, “Ripples of a mutation — an empirical study of propagation
effects in mutation testing,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, ser. ICSE 24. New
York, NY, USA: Association for Computing Machinery, 2024. [Online].
Available: https://doi.org/10.1145/3597503.3639179

O. Legunsen, A. Shi, and D. Marinov, “Starts: Static regression
test selection,” in Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE *17. 1EEE
Press, 2017, p. 949-954.

C. Li, M. M. Khosravi, W. Lam, and A. Shi, “Systematically producing
test orders to detect order-dependent flaky tests,” in Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 627-638. [Online]. Available:
https://doi.org/10.1145/3597926.3598083

P. Nie, A. Celik, M. Coley, A. Milicevic, J. Bell, and M. Gligoric,
“Debugging the performance of maven’s test isolation: experience report,”
in Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 249-259. [Online].
Available: https://doi.org/10.1145/3395363.3397381

A. Shi, P. Zhao, and D. Marinov, “Understanding and improving
regression test selection in continuous integration,” in 2019 IEEE 30th

https://doi.org/10.1007/s10664-014-9313-0
https://doi.org/10.1007/s10664-022-10207-5
https://doi.org/10.1145/3337932.3338815
https://doi.ieeecomputersociety.org/10.1109/ICSME58846.2023.00035
https://doi.ieeecomputersociety.org/10.1109/ICSME58846.2023.00035
https://github.com/spideruci/U2W
https://github.com/spideruci/U2W
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://doi.org/10.1145/3387904.3389296
https://arxiv.org/abs/2208.07574
https://doi.org/10.1145/3368089.3417921
https://doi.org/10.1145/364099.364331
https://doi.org/10.1145/2635868.2635906
https://news.ycombinator.com/item?id=33479397
https://news.ycombinator.com/item?id=33479397
https://doi.org/10.1145/3463274.3463335
https://doi.org/10.1145/3691620.3695541
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00150
https://doi.org/10.1145/3597503.3639179
https://doi.org/10.1145/3597926.3598083
https://doi.org/10.1145/3395363.3397381

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

International Symposium on Software Reliability Engineering (ISSRE),
2019, pp. 228-238.

OpenAl, “Gpt-40 mini,” https://platform.openai.com, May 2025, large
language model, accessed via OpenAl API using LangChain.

J. A. Bargh, M. Chen, and L. Burrows, “Automaticity of social behavior:
Direct effects of trait construct and stereotype activation on action.”
Journal of personality and social psychology, vol. 71, no. 2, p. 230,
1996.

J. Robinson, Likert Scale. Dordrecht: Springer Netherlands,
2014, pp. 3620-3621. [Online]. Available: https://doi.org/10.1007/
978-94-007-0753-5_1654

N. Tillmann and W. Schulte, “Unit tests reloaded: parameterized unit
testing with symbolic execution,” IEEE Software, vol. 23, no. 4, pp.
3847, 2006.

N. Tillmann, J. de Halleux, and T. Xie, “Parameterized unit testing:
theory and practice,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ser. ICSE "10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
483-484. [Online]. Available: https://doi.org/10.1145/1810295.1810441
D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo, “Orbs
and the limits of static slicing,” in 2015 IEEE 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM), 2015,
pp. 1-10.

A. Pizzini, “Behavior-based test smells refactoring: toward an automatic
approach to refactoring eager test and lazy test smells,” in Proceedings of
the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings, ser. ICSE ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 261-263. [Online].
Available: https://doi.org/10.1145/3510454.3517059

Y. Yang, X. Hu, X. Xia, and X. Yang, “The lost world:
Characterizing and detecting undiscovered test smells,” ACM Trans.
Softw. Eng. Methodol., vol. 33, no. 3, Mar. 2024. [Online]. Available:
https://doi.org/10.1145/3631973

J. Delplanque, S. Ducasse, G. Polito, A. P. Black, and A. Etien, “Rotten
green tests,” in Proceedings of the 41st International Conference on
Software Engineering, ser. ICSE *19. 1EEE Press, 2019, p. 500-511.
[Online]. Available: https://doi.org/10.1109/ICSE.2019.00062

M. Greiler, A. Van Deursen, and M.-A. Storey, “Automated detection
of test fixture strategies and smells,” in 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation. 1EEE,
2013, pp. 322-331.

R. Lima, K. Costa, J. Souza, L. Teixeira, B. Fonseca, M. d’Amorim,
M. Ribeiro, and B. Miranda, “Do you see any problem? on the developers
perceptions in test smells detection,” in Proceedings of the XXII Brazilian
Symposium on Software Quality, 2023, pp. 21-30.

K. Tsukamoto, Y. Maezawa, and S. Honiden, “Autoput: an automated
technique for retrofitting closed unit tests into parameterized unit
tests,” in Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, ser. SAC "18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 1944-1951. [Online]. Available:
https://doi.org/10.1145/3167132.3167340

https://platform.openai.com
https://doi.org/10.1007/978-94-007-0753-5_1654
https://doi.org/10.1007/978-94-007-0753-5_1654
https://doi.org/10.1145/1810295.1810441
https://doi.org/10.1145/3510454.3517059
https://doi.org/10.1145/3631973
https://doi.org/10.1109/ICSE.2019.00062
https://doi.org/10.1145/3167132.3167340

	abstract
	Introduction
	Motivation
	Formalizing DAT Test Smell, Background, and Refactoring Principles
	Test Smell: Disjoint Assertion Tangle
	Comparison of DAT with Classic Test Smells
	Refactoring Principles

	Technique
	Evaluation and Experimental Methodology
	Results
	Discussion
	Threats to Validity
	Related Work
	conclusion
	References

